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Abstract 

Cooperative localization is a useful way for nodes within a network to share 

location information in order to better arrive at a position estimate. This method is useful 

in GPS contested environments such as indoors and urban settings. Most research or 

commercial systems exploring cooperative localization rely on either special hardware, or 

extra devices to store the database or make computations. Research also deals with 

specific localization techniques such as using Wi-Fi, ultra-wideband signals, or 

accelerometers independently opposed to fusing multiple sources together. 

This research brings cooperative localization to the smart phone platform, 

specifically to take advantage of the multiple sensors commonly available. The entire 

system runs on Android powered devices, including the wireless hotspot. In order to 

determine the merit of each sensor, analysis is completed to determine successes and 

failures. For this research, the accelerometer, compass, and received signal strength 

capability are examined to determine their usefulness in cooperative localization.  

The result of the research effort is software written for the Android platform that 

can improve on a location estimate. By conducting an experiment at meter intervals for 

7m, the system detected changes in location at each interval with an average standard 

deviation of 0.44m. The closest location estimates occur at 3m, 4m and 6m distances with 

average errors of 0.15m, 0.11m, and 0.07m respectively. This outcome indicates that 

precise estimates are achieved with an Android hotspot and mobile nodes.  
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COOPERATIVE LOCALIZATION ON COMPUTATIONALLY CONSTRAINED 

DEVICES 

I.  Introduction 

1.1 Motivation 

An elite U.S. Army Special Forces group is tasked to extract a high value target 

from a building. As the group navigates through the dark building, shots are fired. In 

order to maintain silence, the soldiers check their standard issue smart phones to see the 

locations of other members. Knowing one of their fellow soldiers is beyond the wall 

where the shots were heard, they carefully enter the room and take aim away from the 

indicator on their phone and apprehend the target. This fictitious scenario may not be far 

from the future as a December 2010 article in the Army Times (Gould & Hoffman, 2010) 

reports that the Army is seeking to modernize its force by issuing every soldier a smart 

phone. The phones are envisioned to provide soldiers with real-time intelligence and 

video from unmanned vehicles. With combat operations in urban environments, some of 

the traditional tracking techniques such as Global Positioning System (GPS) and cellular 

tower triangulation are unavailable. In order to track positions of soldiers in buildings or 

without the previously mentioned services, another method needs to be utilized. The 

ability for a soldier to determine if a friendly force is in the next room could mean the 

difference between life and death in a combat situation.  

The previous scenario may describe just a tactical military situation, but as 

Nielsen ratings report, 40% of all mobile users own a smart phone (Kellogg, 2011). As 

the special edition IEEE Signal Processing Magazine (Sun, Chen, Guo, & Liu, 2005) 
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describes, a mandate exists to refine E-911 location estimates using cellular tower 

triangulation. But what would happen when a natural disaster strikes and the tower is 

unable to triangulate a user’s position, or if the host nation infrastructure is unreliable? As 

they may be stuck under rubble, a program running on the individual’s phone may help 

rescue workers efficiently locate their whereabouts and save the person’s life.  

1.2 Computationally Constrained Devices 

Moore’s Law states that the complexity for minimum component costs increases 

at a rate of roughly double every two years (Moore, 1965). In other words, devices get 

faster and cheaper allowing for them to also shrink in size. Recent years have seen an 

explosion of this technological feat as handheld devices have become cheap enough for 

the average consumer to afford. The term computationally constrained no longer carries 

the same connotation. Devices at the fraction of the size of their fully functioning 

counterpart (i.e., phones vs. computers), still possess all of the functionality of their larger 

brethren, albeit at the speed of perhaps a few years ago. Smart phones, which have a 

growing market share of the mobile industry, currently have 1GHz processors with 

512MB of RAM and 16GB of hard drive space. Cutting edge versions sport a dual core 

processor, 1GB of RAM and over 32GB of hard drive space. The number of these phones 

in the U.S. exceeds 72.5 million of the 234 million Americans that use cellular phones 

(Flosi, 2011). This emergence allows for advanced tasks to be executed while 

maintaining mobility. These phones are no longer for making online phone calls; they can 

edit a variety of document types, play games, access the web, and more all at the same 

time.  
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The operating systems that run these devices are not lacking in capability either. 

The two dominant systems on the market today are Google’s Android and Apple’s iOS. 

Android is based on the Linux kernel and is open source allowing for full customization. 

Apple’s iOS, however, is proprietary and derived from the Mac OS X operating system. 

Because of the open nature of Android, it was chosen as the operating system for this 

research. If a system service needs to be enhanced, or tweaked, the Android kernel can be 

modified and recompiled. This operating system is also making its way onto other 

devices such as watches, televisions and tablets allowing for a greater expansion of 

targeted users. 

1.3 Cooperative Localization 

Cooperative localization is the ability for a node to determine its location relative 

to other nodes. The term node can refer to a device, such as a laptop or smart phone, 

which has wireless capabilities. Nodes communicate location estimates to one another in 

order for other nodes to know where it is. This assistance among nodes helps each obtain 

a much better accuracy than if no nodes worked together. Popular uses for cooperative 

localization are in the field of robotics for autonomous navigation and in logistical 

systems for locating assets. Nodes typically determine their location with the help of 

anchor nodes, which know their exact location. For example, if a node is receiving 

signals from three anchor nodes, it can triangulate its position and relay it to other nodes 

that do not know where they are. In practical localization scenarios, cooperative 

localization is often not the primary means of localizing nodes, but rather is used to 

augment services such as GPS and others when they are not available. 
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1.4 Research Goals 

This thesis lays the groundwork of bringing cooperative localization to sensor-

rich, computationally-constrained devices, such as smart phones. By using multiple 

sensors, a cooperative localization algorithm can produce more robust results because 

errors in any one sensor reading can be corrected by another. 

The goals of this research are to: 

• Bring real-time cooperative localization to computationally constrained 

devices by using their Wi-Fi hotspot capability, Bluetooth, accelerometer 

and other sensors available to the device. 

• Demonstrate this ability on commercial-off-the-shelf (COTS) hardware 

and examine strengths and weaknesses of the hardware. 

• Organize the data fusion with guidance from fusion methods not 

previously applied to cooperative localization. 

These goals are realized by producing a proof-of-concept application can 

indicates neighbor nodes with improved accuracy over methods that do not utilize the 

various sensors. While the results of this thesis offer an improvement over previous 

cooperative localization schemes, the final product is not a fully optimized version which 

takes into consideration battery life and security. Communication between the devices 

will be in the most direct and efficient manner possible and not take into account 

malicious users.  
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1.5 Methodology 

The realization of this research is an iterative process. After sufficient background 

material is gathered on the topic of cooperative localization, the ability for a smart phone 

to support the process is assessed. In support of that effort, the software development kit 

(SDK) need to be explored to understand how the Android application programmer 

interface provide core services for application development. Once the abilities of the 

phone are understood, a method will be developed to combine the various sensors to 

accurately estimate the phone’s location within a small network of other phones. For the 

location estimation to work effectively, a database needs to be implemented to store 

distances that correspond to the received signal strength. As the application develops, 

testing is done to determine the effectiveness of a given measurement routine.  

1.6 Assumptions and Limitations 

In order to execute this thesis, several key assumptions are made. As nodes stay 

on, their batteries deplete which can cause fluctuations in transmit power and degraded 

processing capability as the host operating system attempts to conserve resources. These 

fluctuations are controlled by testing the system with full battery capacity and limiting 

the duration of the tests so the battery does not fall below 50% of full capacity. Another 

assumption is that any GPS data for a node that might adjust its position is considered 

stale. In other words, no current, active GPS readings are used for the purpose of 

localizing nodes. The primary goal of this research is to localize nodes without the use of 

active GPS data. By isolating the capabilities and contributions of this research, it could 
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then be applied to systems in an effort to augment localization when GPS or cell tower 

triangulation is unavailable.  

Other key assumptions rely on the lower layers of the Open Systems 

Interconnection (OSI) model. The physical layer is assumed to not be ideal. Since the 

system may be tested indoors or outdoors, there is no way to create a perfect, 

interference-free physical area. Therefore, the device must accurately handle collision 

avoidance and follow proper IEEE 802.11 signaling techniques to minimize packet loss. 

Another physical layer assumption is bidirectional communication; that is if node A can 

transmit to node B, then node B can also transmit to node A. Also, as stated before, the 

communication will not be encrypted. All nodes are assumed to be trustworthy to 

simplify the effort and focus on the goal of localizing nodes within the network. 

1.7 Implications 

When this thesis is realized, the ability to estimate locations of nearby users will 

be more accurate than if trying to determine the location non-cooperatively. If every 

soldier is equipped with a smart phone, they can use the application to keep track of each 

other whether the battlefield is in the open, in GPS-limited environments, or completely 

cut-off from GPS such as indoors. This capability or technology could reduce friendly 

fire and aid in search and rescue. The application does not require cellular service and can 

be adjusted based on what approximation techniques the user chooses. 

1.8 Thesis Overview 

The remainder of this thesis is organized as follows. Chapter 2 explores the 

background of Android and the capabilities of the operating system. It also discusses the 
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previous work done in the field of cooperative localization to include common 

implementation approaches.  Following the background, chapter 3 details the 

methodology used to design, setup, and conduct the experiment to determine the 

feasibility of using an Android smart phone to perform cooperative localization. Chapter 

4 discusses the results along with an analysis to quantify how well the system performs. 

Finally, chapter 5 concludes the work and provides suggestions for future work. 
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II.  Literature Review 

2.1 Chapter Overview 

This chapter presents an overview of prior research. First, the capabilities of 

Android devices have to be determined, followed by cooperative localization basics. 

From there, the finer implementations of cooperative localization are discussed such as 

received signal strength (RSS), measurements and location fingerprinting. Section 2.2 

provides information about the HTC Hero provided for the experiment as well as the 

Android operating system. Section 2.3 explores cooperative localization techniques while 

Section 2.4 explains that using RSS is the most feasible technique because it does not 

require special hardware or timing abilities. Following that, Sections 2.5 and 2.6 explore 

techniques to increase location estimation accuracy. Section 2.7 summarizes the chapter 

and leads the way forward. 

2.2 Android Powered HTC Hero 

In coordination with the Open Handset Alliance (OHA), Google released the 

Android mobile operating system in 2007 with the first commercially available phone 

released in October 2008. The OHA consists of over 90 companies committed to the 

development of open standards for mobile devices (Alliance, 2007). According to 

Nielsen ratings, Android had less than 5% of the mobile operating system market share in 

4Q09. Just one year later it has reached 19% (Google, 2010). The success is in large part 

due to the diverse hardware and the Android Market which has over an estimated 

500,000 applications available with developers ranging from multinational software 

corporations to hobbyists coding in their spare time. 
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Android is based on the Linux Kernel ranging from 2.6.27 (Android version 1.5, 

API level 3) to 2.6.35 (Android version 2.3.4, API level 10) and most recently 3.0.1 

(Android version 4.0.3, API level 16). It is useful to note that there is also a version 3.1 of 

the OS; however, at the time of this research that platform is reserved for tablet devices. 

In late 2011, the version 2.x series and the 3.x series merged into 4.x to combine tablet 

and cell phone programming functionality.  

The Android kernel handles device drivers, memory management, process 

management and networking. Figure 1, from the Android Developer website details how 

the framework is organized and what libraries are available. The diagram shows the 

kernel at the bottom layer which consist of the Android native libraries written in C and 

C++. Then those libraries are incorporated with Java native interfaces. After the 

interfaces is the Dalvik Virtual Machine responsible for running the Java-implemented 

application layer (Google, 2010) (Shabtai, Fledel, Kanonov, Elovici, Dolev, & Glezer, 

2010) (Enck, Ongtang, & McDaniel, 2009). For the most part, developers utilize the 

Application Framework to invoke the libraries underneath, i.e., a program that tracks 

your path while running would invoke the LocationManager. 



 

10 

 

Figure 1 - The major components of the Android Operating System (Google, 2010). 

In an effort to make applications more useful to the user, Google provides an in-

depth developers guide on their website http://developer.android.com. Applications are 

divided into four main components: activities, services, content providers and broadcast 

receivers. Activities are graphical screens that are displayed to the user; different screens 

that the user could select would represent different activities in the program. Services are 

components that run in the background and can perform long-running tasks. Services can 

be bound to the activity and therefore end when it ends, or can run after the activity has 

been closed. Content providers allow the programmer to share application data with other 

programs. Finally, broadcast receivers respond to system-wide announcements. These 

can be used to pass information from one service to another, or alert the program when 

the screen goes blank. Another feature that can be used is creating a single “application” 

file. This can tie the whole application together and house commonly used functions. 

http://developer.android.com/�
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Since location awareness is becoming more popular in mobile devices, a guide has been 

written to specifically address this issue. While the suggested program flow for obtaining 

the users location is coarse for this research, it serves as a starting point. The Android 

development guide suggests to listen for updates from the desired location provider (in 

this instance, Wi-Fi); maintain a “current best estimate” of location by filtering out new, 

but less accurate fixes; stop listening for location updates; and finally take advantage of 

the last “best” location estimate (Google, 2010). Figure 2 depicts a sample timeline. 

Balancing when to start and stop listening for location updates requires making sacrifices 

between battery life and location accuracy. The Java class responsible for managing the 

location capabilities is aptly named LocationManager. 

 

Figure 2 - Sample timeline for finding user location (Google, 2010) 

 

The “android.location” package calls the LocationManager system 

service, which provides APIs to determine location and bearing for the device. Calling 

this instance allows the program to query for the list of all LocationProviders, a 

class that tracks the last known user location, registers/unregisters for periodic updates of 

the user’s current location from a location provider, and registers/unregisters for a given 

Intent to be fired if the device comes within a given proximity of a given 
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latitude/longitude. This information can be combined with the Maps package included 

with the OS. This functionality is limited to GPS location tracking and cell tower 

triangulation capabilities, but could be beneficial for this research. 

 Other valuable location sensors that can be used in determining location with 

respect to another device are a compass and accelerometer. The compass is accessed from 

the GeomagneticField class which produces the declination, inclination, field 

strength and X, Y, Z values. This information is useful for determining the traveling 

direction to or from a friendly node. The accelerometer is accessed by using the 

SensorEvent API and declaring a Sensor type object of Accelerometer. This 

sensor event will hold the time-stamp, accuracy and the data of the sensor. As described 

in the SensorEvent API, the phone’s X-axis is on the horizontal plane corresponding 

to the right and left of the phone. Acceleration to the right should register positive values 

and to the left should register negative values. Similarly, the Y-axis is vertical plane 

corresponding to the top and bottom of the phone. The Z-axis points toward the outside 

of the screen and a “falling” movement should register negative values.  

 For this research, HTC Hero and Motorola Droid phones are used, which are 

rooted and upgraded to Android 2.3.7 for the Wi-Fi hotspot capability. The HTC phone is 

equipped with the Qualcomm MSM7200A chipset which includes support for 802.11 b/g, 

digital compass and Bluetooth v2.0 (HTC, 2011). The Motorola phone is equipped with 

the TI OMAP 3430 chipset which includes support for 802.11 b/g, digital compass and 

Bluetooth v2.1 (Motorola, 2009). Tables 1 and 2 list the capabilities of each phone. While 

Bluetooth has been used successfully in cooperative localization (Gwon, Jain, & 

Kawahara, 2004), the Android Bluetooth API does not provide a mechanism for 



 

13 

measuring received signal strength. The ability to use Bluetooth as a location device 

could possibly be achieved by modifying the kernel. 

Table 1 - HTC Hero Capabilities and Limitations 

Sensor Chipset Specifications 

Wi-Fi Qualcomm MSM7200A +802.11 b/g 

Bluetooth Qualcomm MSM7200A -Version 2.0 + EDR 

Accelerometer Bosh BMA 150 

+25-1500Hz Bandwidth 
+3000Hz Refresh Rate 
-500 μg/√Hz Acceleration 
Noise Density 

Magnetometer Asahi Kasei AK8973 

+12.6ms Time for 
Measurement 
+/-2.0mT Offset Magnetic 
Field Compensation 

GPS Qualcomm MSM7200A 

+Enhanced filtering software 
to optimize accuracy 
+gpsOneXTRA for enhanced 
standalone performance 

Other Relevant 
Information Qualcomm MSM7200A -CPU is 528 MHz ARM11 

-288 MB RAM 
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Table 2 - Motorola Droid Capabilities and Limitations 

Sensor Chipset Specifications 

Wi-Fi TI OMAP 3430 +802.11 b/g 

Bluetooth TI OMAP 3430 -Version 2.1 + EDR 

Accelerometer LIS331DLH +500-1000 Hz Bandwidth 
-218 μg/√Hz Acceleration Noise Density 

Magnetometer Asahi Kasei 
AK8973 

+12.6ms Time for Measurement 
+/-2.0mT Offset Magnetic Field 
Compensation 

GPS TI OMAP 3430 +aGPS and sGPS 

Other 
Relevant 
Information 

TI OMAP 3430 -CPU is 600 MHz ARM Cortex A8* 
-256 MB RAM 

*Chipset advertises 3x performance gain over the ARM11 used in the HTC Hero 

2.3 Cooperative Localization 

The Encyclopedia of Geographical Information Sciences (GIS) defines 

cooperative localization as  

“The estimation of the locations of wireless devices (aka nodes) in a 
network using measurements made between many pairs (or subsets) of 
nodes. While many localization methods limit an unknown-location 
device to making measurements with known-location nodes, cooperative 
localization methods specifically encourage measurements to be made 
between nodes regardless of each node's prior location knowledge. Then, 
cooperative localization algorithms use the 'mesh' of measurements to 
simultaneously estimate the coordinates of all nodes.” (Patwari, 
Localization, Cooperative, 2008)  
 

The signal used to determine the location is calculated by Time of Arrival (TOA), Angle 

of Arrival (AOA), Time Difference of Arrival (TDOA), or Received Signal Strength 

(RSS). Since the AOA method of localization requires steering the main lobe of an 

adaptive phased array antenna in the direction of an arriving signal (Sun, Chen, Guo, & 
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Liu, 2005), it is not a viable solution for smart phone cooperative localization. The TOA 

and TDOA methods estimate the time required for a signal to go from the transmitter to 

the receiver. This typically relies on line-of-sight (LOS) measurements and is prone to 

multipath, which is the diffraction of signal through the environment. Because the 

operational environment for this research may range from indoor to outdoor and urban 

environments, using TOA or TDOA measurements may not produce the best results. 

Work done by (Gustafsson & Gunnarsson, 2005) and (Patwari, Ash, Kyperountas, III, 

Moses, & Correal, 2005) compare AOA, TOA, TDOA, RSS and RSS map-based 

positioning and determined that RSS is least informative followed by AOA. When an 

RSS map is used, it performs at the same level as AOA and approaches TOA/TDOA. 

RSS also has the capability of outperforming TOA with higher sensor densities. Table 3, 

derived from the works of (Patwari, Ash, Kyperountas, III, Moses, & Correal, 2005), 

(Gustafsson & Gunnarsson, 2005) and (Liu, Darabi, Banerjee, & Liu, 2007), summarizes 

the positives and negatives of the various approaches. 
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Table 3 - Summary of Signaling Techniques  

Method Pros Cons 

AOA 

+Used by cell towers to 
locate users 
+Can be used for acoustical 
localization 
+Provides direction to 
neighboring sensor 

-Requires antenna array 
-Potential accuracy around 
10m 
-Directional accuracy 5-
10degs 

TOA 

+UWB demonstrated 
accuracy between 0.12 to 
1.5m 
+Clock scheduling specified 
in IEEE 802 docs 

-Additive noise 
-Multipath 
-Other than UWB, 
accuracy is 5-100m 

TDOA 

+Can be used for acoustical 
measurements 
+High resolutions clocks 
(GPS) yield very good 
accuracy 

-Dependent on hardware 
chip rate 
-Accuracy usually 5-50m 

RSS 

+Uses common infrastructure 
+Calculation done in 
hardware 
+WLAN RSS accuracy 2m 

-Multipath and shadowing 
-Transmission weakens 
when battery depletes 
-Relies on a good 
fingerprint database 

 

The localization problem can be broken down into three different scenarios: with 

stationary beacons, with moving beacons, and beacon-free. Beacons are defined as nodes 

that are aware of their location either through hard coding or with a GPS. The nodes that 

are unaware of their position are called unknowns. When nodes are able to determine 

their location through various techniques, they can become beacons and relay location 

information to other unknown nodes. One of the obvious shortcomings of stationary 

beacons is the lack of robustness. If the nodes are going to be operating in various 

locations, particularly various indoor locations, the ability to setup new stationary 

beacons would be very time and resource intensive.  In localization with moving beacons, 

the node has the ability to always know its exact position and by using range estimates 
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can estimate the locations of the nodes it passes within range. While this is more feasible 

than using stationary beacons in different locations, knowing precise location indoors is 

very difficult. Beacon-free localization involves the removal of nodes that know exactly 

where they are and uses a coordinate system. The nodes communicate with one another 

and decide their distances based on signal estimations. To determine the exact locations 

of the nodes typically requires post-processing to translate the coordinate assignment to 

an absolute location or fast processing capabilities on the nodes themselves to handle the 

location translation.  A hybrid solution could be implemented between mobile beacons 

and a beacon-less system where a node that had recent location information, (i.e., goes 

from using GPS outdoors to going indoors) could share that information with the other 

nodes that do not have updated location information. 

The July 2005 IEEE Signal Processing Magazine special edition on positioning 

and navigation contains excellent overviews on various techniques and algorithms. In 

(Sun, Chen, Guo, & Liu, 2005) positioning algorithms for WLAN are discussed. When 

comparing empirical models versus propagation models, empirical models place a client 

at a number of sample reference points and measure the RSS over several seconds. The 

propagation model is based on radio wave characteristics while it travels through a 

certain environment. The changes in an indoor environment make the empirical model 

more difficult to deal with as objects move and people may come and go as discussed in 

(Kaemarungsi & Krishnamurthy, 2004), among other sources. The propagation model 

can be affected by environmental changes like humidity which can alter the effectiveness 

of the signal propagation model. Sun et al. describe the various positioning algorithms as:  
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“distributed (every node should be able to estimate its own location), the localized 
(each node gathers information from other nodes in its immediate neighborhood), 
the asymptotic convergence design (computation stops when a certain degree of 
accuracy has been achieved), the self-organizing scheme (node functioning does 
not depend on the global infrastructure), the robust design (the algorithm can 
tolerate node failures and range errors), and the cost-effective and energy-efficient 
approach (this algorithm requires little computation overhead)” (Sun, Chen, Guo, 
& Liu, 2005).  
 
For the system related to this research, a combination of all algorithms could be 

used. This system is designed to be energy-efficient due to the battery life restrictions of 

smart phones. Also each node is able to determine its location while aiding others. It can 

also assume a certain level of accuracy for the sake of efficiency that is, once a location is 

deemed accurate to a specific threshold, the algorithm stops refining the position any 

further, thus saving valuable system resources. Another design consideration that (Sun, 

Chen, Guo, & Liu, 2005) raises are incremental versus concurrent algorithms. 

Incremental algorithms start with a few nodes that are aware of their location then add 

more via triangulation or local optimization schemes. Concurrent algorithms involve all 

nodes calculating their location estimation at the same time. Since incremental algorithms 

can propagate error more easily, concurrent algorithms can avoid this by continuously 

reducing errors among the nodes and is the focus of this research. 

2.4 RSS and Fingerprinting 

The mean received power at distance d, PL(d) is: 

 Equation 1 

                            𝑷𝑳����(𝒅) = 𝑷𝟎 − 𝟏𝟎𝒏𝒑𝒍𝒐𝒈
𝒅
𝒅𝟎

, (1) 

where P0 is the received power in dBm at a short reference distance d0, and np is the path-

loss exponent. Table 4 shows the various path-loss exponents for a given environment, 
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particularly in free space, np is 2, and in-building line-of-sight np ranges from 1.6 to 1.8. 

Work done in (Tummala, 2005) suggests that for WLAN signals, np ranges from 1.26 to 

1.3 as tested between two different receivers and various rooms and buildings. Finding 

the correct value for np can correlate the power received at a specific distance even if true 

data is unavailable. 

Table 4 - Path Loss Exponents for Different Environments (Rappaport, 2002) 

Environment Path Loss Exponent, n 

Free Space 2 

Urban area cellular radio 2.7 to 3.5 

Shadowed urban cellular radio 3 to 5 

In building line-of-sight 1.6 to 1.8 

Obstructed in building 4 to 6 

Obstructed in factories 2 to 3 

 

The equation, however, does not account for the surrounding environment clutter 

which can vary by the average predicted by the equation. Previous research has shown 

that the path-loss for a value d is random and distributed log-normally about the mean 

distance-dependent value. This results in a Gaussian distributed random variable that 

describes the transmit-to-receiver separation with clutter along the path as a random 

effect. The new equation is below with Xσ being the zero-mean Gaussian distributed 

random variable in dB and standard deviation σ (Rappaport, 2002). 
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 Equation 2 

                                𝑷𝑳����(𝒅) = 𝑷𝟎 − 𝟏𝟎𝒏𝒑𝒍𝒐𝒈
𝒅
𝒅𝟎

+ 𝑿𝝈 (2) 

The transmitter-receiver distance is given by the Euclidean distance equation 

 Equation 3 

                      𝒅𝒕,𝒓 = �(𝒙𝒕 − 𝒙𝒓)𝟐 + (𝒚𝒕 − 𝒚𝒓)𝟐 (3) 

 Revisiting algorithm possibilities, there are a few that deal specifically with RSS 

measurements. Work done by (Chandrasekaran, et al., 2009) reduced localization error to 

0.24m and achieved very accurate results by comparing lateration based algorithms and 

classification based algorithms. The former explicitly models the signal-to-distance effect 

on RSS and estimates the position of the transmitter by measuring the distance to 

multiple receivers. The latter is also known as matching or fingerprinting algorithms and 

do not rely on a model of signal strength and distance relationship. They match RSS 

observations against an existing signal map.  Lateration-based algorithms generally take 

advantage of triangulation which uses the geometric properties of triangles to estimate the 

target location. An example of triangulation is seen in Figure 3 where the ideal 

intersection of three or more circles designates the nodes position.  

Work done in (Liu, Darabi, Banerjee, & Liu, 2007) and (Gu, Lo, & Niemegeers, 

2009) summarize the current state of cooperative localization for wireless networks. 

Some of the systems examined for their research along with some commercial systems 

are listed in Table 5.  
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Figure 3 - Triangulation typically used in cooperative localization when multiple access points are 
available 

Table 5 - Summation of Techniques and Error Ranges 

System 
Wireless 
Technologies 

Positioning 
Algorithm Accuracy Precision Complexity 

Microsoft 
RADAR 1 WLAN, RSS 

KNN, Viterbi-
like algorithm 3-5m 

50% within 
around 
2.5m Moderate 

M12 
 

Lateration 
(Bayesian 
inference) 5.49m 

  
Horus 2 WLAN RSS 

Probabilistic 
method 2m 

90% within 
2.1m Moderate 

Ekahau 2 WLAN RSSI 
Probabilistic 
method 1m 

50% within 
2m Moderate 

SnapTrack 2 
Assisted GPS, 
TDOA 

 
5m-50m 

50% within 
25m High 

Ubisense 2 

Unidirectional 
UWB, 
TDOA+AOA Least Square 15cm 

99% within 
0.3m 

Real time 
response 

Multi-Loc 2 WLAN RSS SMP 2.7m 
50% within 
2.7m Low 

GSM 
Finger-
printing3 

GSM cellular 
radio 

Weighted 
KNN 5m 

80% within 
10m Medium 

CERP 3 
GSM, FM, 
DVB, RSS 

Discriminativ
e gains 1.37m 

Median 
error of 
0.16 High 

DMRF 3 
GSM, FM, 
DVB, RSS 

Transformed-
kernel 1.48m 

Median 
error of 
0.33 High 

SELFLOC 4 
WLAN RSS and 
Bluetooth 

Selective 
sensor fusion 1.6m 

Median 
error of 1.8 Medium 

1 (Bahl & Padmanabhan, 2002), 2 (Liu, Darabi, Banerjee, & Liu, 2007), 3 (Fang & Lin, 
2010), 4 (Gwon, Jain, & Kawahara, 2004) 
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2.4.1 Lateration Based Algorithms 

Non-linear Least Square (NLS) algorithms estimate the true location of the 

transmitter (x,y) as an optimization problem where the actual locations of the reference 

points (xi,yi) are known beforehand. The distance estimate is obtained from the signal-to-

distance relationship. They then solve for the optimal set that minimizes the sum 

(Chandrasekaran, et al., 2009) by 

Equation 4 

(𝒙�,𝒚�) = 𝒂𝒓𝒈𝐦𝐢𝐧𝒙,𝒚 ∑ ��(𝒙𝒊 − 𝒙)𝟐 + (𝒚𝒊 − 𝒚)𝟐 − 𝒅𝒊�
𝟐

𝑵
𝒊=𝟏         (4)  

Using this method, (Chandrasekaran, et al., 2009) achieved a median accuracy of 1.62m. 

Baysian Networks (M1) encode dependencies and relationships among a set of 

random variables. The relationship between RSS and the location is found using the log-

distance propagation model. This algorithm enabled (Chandrasekaran, et al., 2009) to 

achieve 0.24m accuracy. In (Patwari, Ash, Kyperountas, III, Moses, & Correal, 2005), 

they classify this type of estimation under distributed algorithms because the node likely 

does not have the processing power to perform the calculations. The work must be 

distributed because a single processor may cause a communication bottleneck. They note 

that this method is particularly promising because each sensor stores a conditional density 

on its own coordinates based on the measurements along with the conditional density of 

its neighbors. 

2.4.2 Classification Based Algorithms 

The RADAR system proposed by (Bahl & Padmanabhan, 2002) uses a signal map 

as an input during an offline phase. During the online phase, a signal is matched with the 
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closest fingerprint in the database. The method the Microsoft researchers used was K-

Nearest Neighbor averaging where the algorithm searches for K location entries from the 

database which have the smallest root mean square of error. The coordinates returned are 

averaged to compute the final location estimate. In their experiment, the authors achieved 

a median error of 2.93m using three access points. 

Gridded-RADAR is an improvised RADAR system in which the measurement 

area is sub-divided into a grid and the signal map is interpolated over the entire grid. 

Work from (Chandrasekaran, et al., 2009) found that this provides a much finer-grained 

resolution because the regions not covered by the signal map can be returned as location 

estimates. In their experiment, the median location error was 0.36m versus the 2.93m 

found from the original RADAR system. 

The Highest Probability (H1) algorithm divides an area into tiles and returns the 

most likely (x,y) position by finding the highest probable tile using Bayes’ rule over the 

set of RSS values. This approach assumes that the distribution follows a Gaussian 

distribution. More detailed information about the H1 algorithm is in (Chandrasekaran, et 

al., 2009). 

2.5 Data Fusion 

Data fusion is the process of dealing with the association, correlation, and 

combination of data and information from single and multiple sources. The goal is to 

refined position estimation more so than any single source could do. From (Sun, Chen, 

Guo, & Liu, 2005), “different sources, however, are subject to different propagation 

errors that contribute unequally to global position estimation errors. Adaptive data fusion 
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and hybrid localization techniques are employed to better integrate different types of 

position and navigation information.”  For instance, GPS and cellular positioning 

combined achieve a much better result than either could independently. Both (Sun, Chen, 

Guo, & Liu, 2005) and (Sayed, Tarighat, & Khajehnouri, 2005) from the July 2005 IEEE 

Signal Processing Magazine highlight that data fusion techniques have been applied to 

TOA-TDOA, TOA-AOA, and AOA-TDOA measurements each with their own merits. 

For example, AOA and TDOA measurements have been combined to limit multipath 

effects. As the number of data sources grows, the process to control how they are 

managed and integrated into the system must be capable of handling the sporadic nature 

of signal processing. 

 One of the more familiar methods for data fusion is the Joint Directors of 

Laboratories (JDL) data fusion model described in (Hall & Llinas, 1997), (Llinas, 

Bowman, Rogova, Steinberg, Waltz, & White, 2004) and (Steinberg & Bowman, 2009). 

Some of the key issues they raise are: what algorithms are appropriate? What accuracy 

can realistically be achieved by data fusion? How does the environment affect the 

processing? Under what conditions does multisensory data fusion improve system 

operation? These are all important to balance particularly when trying to develop a real-

time system for cooperative localization. The model describes five levels:  

• L0 - signal/feature assessment – Estimation of signal or feature states 

• L1 - entity assessment – Estimation of entity parametric and attributive 

states 

• L2 - situation assessment – Estimation of the structures of parts of reality 
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• L3 - impact assessment – Estimation of the utility/cost of signal, entity, or 

situation states, including predicted utility/cost given a systems alternative courses 

of actions 

• L4 - process refinement – A system’s self-estimation of its performance as 

compared to desired states and measures of effectiveness 

As shown in Figure 4, these levels are not hierarchical and any signal source can 

be in any level independent of another. Level 0 is concerned about the structure of the 

measurement sets and not their cause. Here is where features of the signal are extracted to 

produce estimated signal and feature states and a level of confidence. In the terms of this 

effort, it requires differentiating between the various signals, and establishing a beginning 

weight value either though a user-input system, or based on previous use of the signal. 

Level 1 was conceived as dealing with highly-developed applications of data fusion such 

as detection, identification, location and tracking of physical objects. This idea of target 

detection and identification does not apply directly to cooperative localization in the 

sense that we are not tracking an object, but are listing the object that needs to be located. 

For the purpose of this assessment, level 1 is omitted from the proposed model. Level 2 is 

about inferring situations, as the name implies. If applying the model to system states, 

this level infers from the estimated state of one entity in a situation to another and from 

the estimated attributes and relationships of entities to situations. One of the difficulties 

with cooperative localization is that research will deal strictly with indoor environments 

or with outdoor environments but not precise measurement (i.e., GPS). The situation 

assessment level would aid greatly in determining what signal propagation parameters to 

use, either low np for outdoors, or high np for indoors. Another application could be 
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when using a fingerprinting database, using one calibrated for indoors, or one for 

outdoors. Level 3, impact assessment, was meant primarily for tactical military decisions 

in the sense of if we follow this course of action, then the outcome could be that. 

Similarly, level 3 could be used in the cooperative localization sense of if we weigh this 

sensor more heavily; the precision will be affected in this manner. Finally, level 4 

encompasses assessment, adaptive control, and data collection of the fusion process. This 

could, and should, include measures of performance and measures of effectiveness. The 

author’s in [23] describe a proposed level 5 for user refinement. This level would be the 

transformation of the signal data into a graphical display or control board. While this 

level would be beneficial, it could also be tied into the far right of Figure 2 as the 

computer interface. An interesting contribution that [23] makes is that of including 

resource management levels that mirror the data fusion ones. Describing and 

incorporating them for this research is out of the scope of this paper, but they could be 

used for dynamically changing the level characteristics and parameters of the data fusion 

model. 
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Figure 4 - JDL Data Fusion model, slightly revised for cooperative localization 
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2.6 Improving Accuracy 

A promising approach to achieving a much more energy efficient and resource 

limited location estimate is to use the concept of sensor fusion. In this approach, 

traditional cooperative localization techniques are combined with other available sensors. 

Cooperative localizing is handy using a smart phone as the localization device because 

many sensors (as discussed in section 2.1) are available. The approach has been done on 

other devices that combine the following: WLAN and Bluetooth (Gwon, Jain, & 

Kawahara, 2004), WLAN and accelerometer (Hamilton, Ma, Baxley, & Walkenhorst, 

2010) (Xu, Ouyang, Le, Ford, & Makedon, 2007), or WLAN and other RF signals of 

opportunity (Fang & Lin, 2010).  

2.6.1 WLAN and Bluetooth 

The more widely referenced article, written in 2004, (Gwon, Jain, & Kawahara, 

2004) proposes the Selective Fusion Location Estimation (SELFLOC) and Region of 

Confidence (RoC) algorithms. The former infers the user location by selectively fusing 

location information from multiple wireless technologies while the latter attempts to 

overcome the problem of aliasing in the signal domain. Their SELFLOC system allows 

them to combine triangulation, KNN and Smallest M-vertex Polygon (SMP). SMP, 

which has been used in (Pandya, Jain, & Lupu, 2003) involves searching M candidates 

from each access point whose distance in the signal space matches in order to create m-

vertex polygons. The coordinates of the smallest polygon are averaged to give the final 

location. The SELFLOC approach combines each algorithm with an average weight 

based on certain confidence factors (Figure 5). The RoC algorithm they propose counters 
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aliasing in the signal domain by forming regions of confidence within which the true 

location of a user lies with some high probability. 

 

 

 

 

 

Figure 5 - SELFLOC system (Gwon, Jain, & Kawahara, 2004) 

Various findings were found by comparing WLAN, Bluetooth, number of AP’s, 

and algorithms. In general, when using both Bluetooth and WLAN, accuracy increased 

by 11-28% and when all algorithms were used improvements rose to 47-70%. While 

impressive improvements were noticed with SELFLOC and RoC, the process requires 

extensive computation requirements and would have to be tailored appropriately for the 

smart phone environment. 

2.6.2 WLAN and Accelerometer 

In (Hamilton, Ma, Baxley, & Walkenhorst, 2010), they combine the RSS 

measurements with accelerometer results to overcome inaccuracies with RSS 

measurements alone. They apply a distributed extended Kalman filter to combine the two 

measurements in their simulations. Their simulation includes anchor nodes. They note 

that acceleration is a continuous process but they sample at specific intervals potentially 

missing valuable information from the sensor. Therefore, their measurement is used as 

the average acceleration over the entire interval between checks. In their simulation of 60 

mobile nodes, their hybrid approach was able to use the acceleration measurements to 
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generate higher accuracy in location estimation despite the low distance measurement 

accuracy from RSS measurements.  

Another effort that used accelerometers is detailed in (Xu, Ouyang, Le, Ford, & 

Makedon, 2007). They propose an Anchor-Free Mobile Geographic Distribution 

Localization (MGDL) algorithm. The use of an accelerometer is less involved than in 

(Hamilton, Ma, Baxley, & Walkenhorst, 2010) and instead relies on the sensor to 

determine when the node resumes movement. They perform their algorithm by labeling 

nodes as either static or mobile and updated or not. Since they assume all nodes will start 

as static and not updated, they perform something similar to hop-counting to measure the 

distance from some bootstrap node to other nodes. Each node collects coordinate 

information from its neighbor and then Dijkstra’s algorithm is performed to obtain the 

shortest path between each pair. A local map is then constructed followed by a global 

map. The nodes are now labeled as static and updated. At this point, the accelerometer is 

used to detect when movement occurs so that the nodes location can be updated. When 

compared to other algorithms such as Monte Carlo Localization (MCL) and Elastic 

Localization Algorithm (ELA), MGDL outperformed both when the number of nodes 

increased (20% better location accuracy than MCL and 28% better than ELA), when the 

node speed varied (22% better location accuracy than MCL), and that communication 

overhead is better in MGDL while MCL maintains a constant overhead. 

2.6.3 WLAN and Signals of Opportunity 

Two algorithms that (Fang & Lin, 2010) propose are Direct Multi-Radio Fusion 

(DMRF) which uses the spatial correlation after the information of measurements is 

reorganized to minimize redundancy and Cooperative Eigen-Radio Positioning (CERP) 
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which incorporates the spatial discrimination to estimate the location. The DMRF 

algorithm assumes each node can detect RSS values from GSM (cellular network), 

Digital Video Broadcasting (DVB) and FM (radio). They use kernel positioning instead 

of the more common Gaussian-based method. A probabilistic function is estimated by 

non-linear calculations of the transformed kernel distance between the joint observation 

and all stored RSS patterns. The authors conduct an experiment using both algorithms 

using GPS as ground truth data. Comparing the three signals separately, then combine 

along with SELFLOC found that CERP performs the best with a mean error of 1.37m 

followed by DMRF at 1.48m, then SELFLOC at 2.68m, WLAN at 2.69m and finally 

GSM with an error of 8.43m.  

2.7 Summary 

This chapter presents background information on the Android operating system 

and cooperative localization. The technique of RSS fingerprinting is discussed along with 

a few algorithms that are implemented to optimize the fingerprint matching such as 

lateration based and classification.  Finally, the chapter concludes with how accuracy 

improvements are made by incorporating various sensors. In all instances, adding an 

additional sensor improved location estimation. 
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III.  Methodology 

3.1 Chapter Overview 

This chapter defines the methodology for evaluating cooperative localization on 

constrained systems. Section 3.2 describes the problem definition along with the goals 

and hypothesis of this work. Section 3.3 identifies the experimental setup, boundaries and 

assumptions of this system. Section 3.4 offers the system services while section 3.5 

discusses solution workload. Section 3.6 identifies the performance metrics for 

determining the merit of this work. Section 3.7 defines key workload and system 

parameters while section 3.7 and 3.8 discuss the evaluation technique and experimental 

design. Finally, section 3.10 serves as a summary to this chapter. 

3.2 Problem Definition 

The problem considered in this research is how nodes collude to share their 

location information in contested environments. Current combat operations and search 

and rescue missions take place in urban settings where knowing the location of another 

friendly user can mean the difference between life and death.  Since many people already 

carry smart phones, they can use its numerous sensors to aid in location estimation. 

3.2.1 Goals and Hypothesis 

The objective of this research is to bring cooperative localization to 

computationally restricted devices, primarily the Android platform, in order to utilize 

several sensors that are now available on these common devices. Most of the research 

that has been done in the cooperative localization field has been on specialized equipment 

with ideal laboratory conditions. The few works that incorporate multiple sensors and 
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techniques have done so in simulation or have relied on post processing of the data. 

Another limitation of most research is that the location estimation is only as good as the 

fingerprinting database built a priori. If the time is not taken to ensure a good database, 

or the operating environment changes, the results of the location estimation are less than 

optimal. By using common devices, this research demonstrates that cooperative 

localization can be achieved with low-cost, off-the-shelf, multiple sensor devices.  

The goals of this research are to: 

• Bring real-time cooperative localization to computationally constrained 

devices by using their Wi-Fi hotspot capability, Bluetooth, accelerometer 

and other sensors available to the device. 

• Organize the data fusion with guidance from fusion methods not 

previously applied to cooperative localization. 

• Demonstrate this ability on commercial off the shelf hardware and 

examine strengths and weaknesses of the hardware. 

The goals are realized by producing a proof-of-concept application that can 

indicate neighbor nodes with improved accuracy over methods that do not utilize the 

various sensors. It is hypothesized that by utilizing the many sensors on the phone that 

the device will be able to update more reliably and in near real time to produce more 

accurate location estimates. 

3.2.2 Approach 

The approach to developing the software for the system will follow the spiral 

model. This combines both top-down and bottom-up software engineering concepts 

which allows for designing and prototyping to occur rapidly. This approach focuses the 
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effort by keeping objectives in mind, resolving risks, developing and testing code, and 

planning for the next sensor to be implemented into the project. 

3.3 System Setup 

The system includes the Android devices within a wireless sensor network. The 

devices can receive, transmit, and process data. For simplicity of drawing, the 

transmitting and receiving range are assumed to be symmetrical but in the real world, the 

distances may vary due to changing conditions. While the RF waves continue to 

propagate indefinitely, there is a limit to the minimum amount of power the node needs in 

order to use the signal for RSS calculation. This is handled by the hardware and software 

already built into the Android operating system. Since the research goal is to use a COTS 

system with multiple sensors to localize in the real world, the physical network layer is 

considered in the experiment and error free communication cannot be assumed. Error free 

communication can be attempted by keeping the distance relatively short. This 

communication functionality along with the medium access control (MAC) protocol is 

handled by the Android kernel. The nodes may or may not be stationary. A moving node 

allows for the positioning algorithm to update and correct for any errors that may have 

been encountered. All of the devices use the same positioning algorithm. 

As mentioned in Chapter 2, the phones need to be rooted and upgraded in order to 

utilize the Wi-Fi Hotspot capability. In order to do that on the HTC phones, the programs 

ClockworkMod Recovery (Dutta, 2011), Universal Androot and a flash 

image file were used as described on several Android forums (Cyanogen, 2011). 

ClockwordMod is a tool that allows the user to perform several advanced recovery and 
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installation operations on the phone. These are normally locked from the typical user but 

by installing the program, new operating systems can be put onto the device. 

Universal Androot is a program that is installed on the vendor version of the 

operating system and when executed exploits a common vulnerability to give the user 

root level access. When root access is achieved, the flash image is placed on the phone’s 

memory card and the command “flash_image recovery recovery-

clockworkmod-hero.img” is invoked to put the recovery image onto the system 

partition. This flash image is a small utility that allows the user to rewrite system 

partitions with image files, such as the ClockworkMod program to simplify installing a 

modified operating system. The process is similar for the Motorola handset, with a 

different flash image and version of ClockworkMod. With ClockworkMod working 

successfully, as observed by rebooting the system into the bootloader, CyanogenMod 

7 can be installed. 

Both devices are capable of running CyanogenMod 7, which is an aftermarket 

version of Android 2.3.7 that offers features not found in official handset releases 

(CyanogenMod, 2011). In other words, when a handset company stops releasing updates 

provided by Google, CyanogenMod will continue supporting it with the latest version 

and provide some of the functionality that the original developer omitted. Installing this 

operating system required putting the designated zip file on the memory card and booting 

into ClockworkMod. From there, a factory reset and cache wipe are completed 

followed by the option “Install zip from sdcard”. CyanogenMod 7 is 

installed and the devices are ready to be used. In order to create a personal network for 



 

35 

this experiment, the open source application called android-wifi-tether (Mue, 

2011) is installed. This program allows users to create a Wi-Fi hotspot and while most 

users install it to share their phones internet capability, for this research it is used to 

create a subnet for each node to broadcast location updates. At this stage, the 

programming portion can begin. 

The Windows version of the Android Software Development Kit (SDK) is used to 

implement the localization method. The target application uses API Level 8 which 

corresponds to the operating system version of Android 2.2, revision 3 (July 2011). A 

software database stores RSS measurements and their corresponding distances from 

experimentation. When a device can connect and exchange location estimates and 

relevant information about the network, more sensors can be incorporated. In other 

words, when node a can connect to node b’s Wi-Fi hotspot and node b transmits its 

location estimate, node a uses the estimate with the related RSS measurement in the 

fingerprint database. Once this capability is achieved, another measurement approach can 

be introduced into the system. One of the next logical pieces of software to include in the 

next phase is the use of the accelerometer to detect when the device moves. If it is 

currently moving, the magnetometer can be polled to use the compass feature in the API. 

By knowing the heading of the device, further refinements to fluctuating RSS 

measurements are made. This process allows the fingerprint database to be updated, since 

the node knows which direction it is heading, it can increase or decrease the correlating 

distance appropriately.  

As mentioned previously, the RSS database is an important aspect for localization 

indoors. The SQLite database is created by collecting RSS values every 3 seconds over 
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the span of 2 minutes per distance. Each measurement is every 0.254m from the wireless 

access point. This corresponds to about 40 measurements per location. The average are 

taken and recorded. When 30 locations are measured, the averages are plotted to 

characterize the path-loss curve described in Chapter 2. A logarithmic trend line is fit to 

the measured curve to create a one-to-one mapping of RSS levels and distance. The 

degree of error can be estimated by subtracting the distance from the measured recording 

and the distance that corresponds to the same number from the modeled trend line. For 

example, a measured RSS of -66dB corresponds to 1.524m, but the model has -66dB at 

1.397m resulting in an error of 0.127m.  

A Unified Modeling Language (UML) diagram for this research is included in 

Appendix A. The UML diagram shows each Android class with relevant variables and 

functions along with the interclass communication. It can be referenced for the remainder 

of this section. The user interface has buttons for the user to select what service they wish 

to run: receive, transmit, compass and accelerometer and is shown in Figure 6. These 

buttons control the on/off functionality of each service by creating and sending an intent 

for the service to receive. The screen also displays the current Wi-Fi configuration such 

as IP address, initial RSS reading, and to what access point it is connected. This main 

screen also updates with the phone’s current RSS reading, distance to the access point, 

the other node’s RSS reading, and the distance between the two. The activity must have a 

broadcast receiver from the application program which broadcasts the information as 

necessary.  
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Figure 6 - Screenshot of localization application 

The transmit service is responsible for encapsulating information and transmitting 

it via a User Datagram Protocol (UDP). This allows the device to send messages to other 

nodes without handshaking and prior communication. This method may be unreliable as 

packets are not guaranteed to be delivered, but for this small network and the frequency 

of message transmission, this is not a concern. The transmit service also requests location 

updates from the GPS and receives broadcast intents from the accelerometer and 

compass. This information is transmitted as a UDP packet at a regular rate to be received 

by the receive service. Implemented in a handler, which allows messages to be sent and 

received from the operating system, the service creates a socket to wait for UDP 

messages to arrive. When a new transmission is received, it is parsed for what type of 

packet it is, such as a fresh GPS, stale GPS, movement, or stale movement packet.  
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In order to efficiently transmit the data, the packet is formed with relevant 

information. The packet starts with an identifier, such as ‘gps’, ‘sgps’, ‘moved’, 

‘smoved’, or ‘est’. These packets represent active GPS, stale GPS, moved, old moved, or 

estimated location data respectively. All but the ‘moved’ and ‘smoved’ packets send 

string representations of the Location class information such as latitude, longitude, 

altitude, bearing, accuracy, speed and time in that order. Finally, the transmitting node’s 

RSS value is added. For example, the first transmission from a node sending GPS data 

would be: 

gps,39.781127,-84.08111622,0,90,0,0,1325681676393,-42 

where the field and corresponding values are shown in Table 6. 

Table 6 - Example GPS transmission 

Item Value 

Type GPS 

Latitude 39.781127 

Longitude -84.08111622 

Altitude 0 

Bearing 90 

Accuracy 0 

Speed 0 

Time 1325681676393 

RSS -42 
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A moved packet would contain the X and Y values from the 

SensorEventListener along with the bearing and RSS value. The stale movement 

packet only needs to send the timestamp of the last move along with the bearing and RSS 

value. By knowing the time the node last moved and its RSS value, a better 

approximation can be made of its location. Examples of a move and stale move packet 

are below: 

Moved,-3.2961242,-0.19068487,0.0,-42 

Smoved,1325682747867,0.0,-46 

Depending on the type of packet, a specific function is called in the Application class. 

The Application class is the main file responsible for computing the location 

estimates. For instance, a fresh GPS transmission has the accuracy checked as reported 

by the Location class accessor getAccuracy() to determine if the returned integer 

is more accurate than what was previously stored in the database for that node. By 

contrast, the stale GPS information is weighed less heavily as an accurate location for 

that node or a movement packet would add some distance to the estimated distance 

between the node and access point based on how fast the movement was. This class also 

provides a way for the Activity previously mentioned to display the distance information, 

along with accessors so that other classes can easily get the location of their node and the 

other node. 

The compass and accelerometer services follow similar designs. 

SensorEventListeners are created which require the implementation of the 

function onSensorChanged(SensorEvent event). The event argument that is 

passed through for the accelerometer is a structure that includes accuracy, type of sensor, 
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timestamp, and values. The values element is an array of floats that characterize the X, 

Y and Z axis which correspond to left/right, forward/backward, and up/down movement, 

respectively. These values include the rate of gravity, so a device sitting flat on the table 

responds with a value around 9.8 in the positive z-direction. This research restricts 

movements to the X and Y axes, since the nodes will only be on a 2-D plane. Restricting 

the experiment to two dimensions reduces the uncertainties with the phone’s antenna 

pattern. When creating a sensor of type_orientation for the compass, the event 

values correspond to azimuth, pitch and roll. The only direction used in this effort is the 

azimuth, to determine which way the phone is pointing, because the phone is assumed to 

be lying flat thus canceling out pitch and roll. In order to simplify the positioning 

algorithms, the hotspot is assumed to be facing north so that a latitude and longitude can 

be calculated given the access points latitude and longitude, distance, and azimuth to the 

node. Both the accelerometer and compass service broadcast the event values to the main 

application. 

3.4 System Services 

This system enables an Android smart phone to estimate its position without the 

direct aid of GPS or cellular tower triangulation. The system achieves this by sending a 

minimal number of messages in a short period of time. It is successful when all nodes in 

the experiment within a given transmit area are able to estimate their location. The 

system fails when a node has not been able to determine its relative position to the other 

nodes. It is reasonable to assume that when a node is not in transmit distance of any other 

node that it has no ability to estimate its location and thus fail. Some other causes for 
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failure could result from unreliable medium, such as the introduction of a barrier that 

prevents signal propagation or too many nodes operating on the same wireless frequency 

channel. This research does not introduce any barriers that are not already present at the 

time of testing. In other words, an office cubical that is already present is modeled, but a 

sheet of metal will not be placed in between two nodes during testing. This research also 

relies on proper IEEE 802.11 handling of network congestion. 

3.5 Workload  

The workload of the system depends on the network topology. For sparse 

networks, there is less network congestion; however, the localization results may be less 

accurate. When the network is dense with several nodes, the localization results are more 

accurate but the network congestion is considerably higher. This could result in more 

dropped packets. In order to exchange location information, nodes connect over IEEE 

802.11 and follow standard network association procedures, which include authentication 

and association requests/responses with the node acting as the access point. This process 

of connecting and disconnecting from each node increases the amount of traffic in the 

network is not directly related to the localization process. 

An example of the communication between two phones is illustrated in Figure 7. 

Both phones start with a location and accuracy. After GPS messages are exchanged, the 

phones send an estimate of where they think the other is. If the accuracy is better, the new 

location is accepted. When movement is detected, a moved packet is set with the 

accelerometer data for the other phone to approximate a new distance. Another 
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comparison is done and another estimate packet is sent out to determine if the new 

estimate is worth keeping. 

 

Figure 7 - Example communication between nodes 

3.6 Performance Metrics 

 The primary metric used to evaluate the performance of the system is the distance 

error. As discussed in Chapter 2, the Euclidean distance can be used to measure the 

distance between two nodes. In order to find the error, the real distance is subtracted from 

the computed distance. For example, given a transmitter, t, and a receiver, r, the real 

distance between them will be based on (xt, yt) and (xr, yr). The calculated distance will 

be based on (x’t, y’t) and (x’r, y’r). The distance error, et,r, is the difference between the 

real distance, dt,r, and the calculated, d’t,r as shown in the following equation 

Equation 5 
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𝒆𝒕,𝒓 = ��(𝒙𝒕 − 𝒙𝒓)𝟐 + (𝒚𝒕 − 𝒚𝒓)𝟐 − �(𝒙′𝒕 − 𝒙′𝒓)𝟐 + (𝒚′𝒕 − 𝒚′𝒓)𝟐�      (5) 

This effort has been simplified for only one direction of movement, so the y component 

reduces to zero and the error is simply the estimated distance minus the actual distance. 

In order to further characterize the system error, the maximum error is calculated. 

All efforts to localize a node contain some source of error. The error is calculated by 

taking the maximum error of the localized node and combining it with the error of the 

node that needs to be localized. In other words, if the localized node has an error of 2m 

and the computed distance between them is 5m with a 1m error at the newly localized 

node, the worst case distance between the two nodes is 8m. Based on general 

observations of the GPS capability on the HTC Hero, an error of 1.8m is common with 9 

GPS satellites being used. This value is used in the analysis because determining the best 

and worst case values of the GPS chip is out of the scope of this research. By assuming 

an error of 1.8m for the worst case analysis, a general idea of how the system is 

inaccurate is plotted to show the effects of the error. The maximum error could obviously 

be higher with a larger GPS error but the trend is similar. 

3.7 System Parameters 

3.7.1 Workload Parameters 

• Number of Nodes – The number of nodes in the system can affect how accurately 

one is able to determine its location. This experiment consists of two localizing 

nodes.  

• Node Density – Node density defines how many nodes are within transmission 

radius. If no nodes are within the transmission radius, the density is considered 
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negligible. If all available nodes are within the radius, then the density is 

maximal. While all of the nodes (2) are within the transmission radius, the density 

is still low compared to other research efforts. The low density requires the nodes 

to be more accurate in their location estimation and cannot rely on reducing error 

via many neighbors. 

3.7.2 System Parameters 

• Node Range – The node range is the distance the node can transmit and receive 

packets. As the battery depletes, the range will go down and the reliability of RSS 

measurements may be affected. Based on the transmission distance of a mobile 

access point, the range will not exceed 7m. The distance is controlled by 

measuring the distance and maintaining line-of-sight with the hotspot. 

• Accuracy – The accuracy is how close the location estimate is to the actual 

distance. The node localized poorly if the accuracy is low (i.e., true distance was 

much higher or lower than the estimate).  

• Sensors Used – The types of sensors used in the approximation aid in the merit 

calculation of the localizing algorithm. This relies on the accuracy; if the accuracy 

is high and a certain collection of sensors was used, they are favored in other 

rounds of location estimation. 

• Antenna Type – The antennas used are capable of bi-directional links and 

omnidirectional transmission. It is assumed that any node that can receive a 

transmission also has the ability to transmit to that distance. This assumption 

reduces the likelihood of dropped packets causing nodes not to localize. 
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3.8 Evaluation Technique 

Direct measurements are used as an evaluation technique for this research. 

Simulators often have difficulty accurately modeling the RF environment and make 

several assumptions. Therefore, producing a system that works in the real world provides 

the most realistic results. Also, characterizing the exact computational capabilities and 

the sensors available on an Android device would be more challenging in simulation than 

with real devices due to the fact that most modeling environments do not have nodes pre-

written for Android devices. Allotting time to create new nodes detracts from working 

with the actual hardware. 

Primary testing is indoors in an office building environment with concrete walls 

and cubicles to avoid weather limitations. Although this environment produces a more 

undesirable RF atmosphere than a wide-open outdoor space, it does not introduce 

weather uncertainties and provides a more realistic environment since the goal is for the 

system to work in contested spaces. Artificial location information loaded onto each node 

with a certain degree of accuracy. This would be analogous to a node coming from 

outside into the Wi-Fi hotspot. This hotspot is at one end of a tape measurer and the two 

nodes are placed at varying locations, as shown in Figure 8. The reported location from 

the hotspot from each node and the distance between the two nodes are noted along with 

the actual distances. This approach allows for a degree of error to be determined. 
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Figure 8 - Simple testing diagram showing how experiment will be setup 

3.9 Experimental Design 

When considering how many experimental runs to execute of a hardware 

experiment, practical considerations need to be taken into account. For instance, running 

experiments for every potential sensor combination are time intensive. This research 

bases the merit of sensor fusion on computationally constrained devices ground off recent 

works in the field with only RSS computation. The merit of this research relies on the 

error distance previously mentioned. In order to achieve a reliable estimate, the average 

error distance over 30 different samplings at the same distance is used. This number of 

trials provides a sample mean that is approximately normally distributed with a mean and 

variance, according to the Central Limit Theorem. More experiments can be done at 

varying distances and movements with the same number of runs to show how the system 

performs under various conditions. For simplicity, measurements will be taken at 

0.254m, 1m, 2m, 3m, 4m, 5m, 6m, and 7m. The measurements alternate between pairs of 

distances, for instance, the phone starts at 0.254m and the estimate are recorded, and then 

moved to 1m, recorded, then back to 0.254m, and so on.  

To test the accelerometer and compass, the phone is placed on a cubical desk with 

the respective service running for the test. The SensorEvent values are sent to the 
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debugger for analysis. Using a hand, the phone is moved left to right, right to left and 

again left to right. The other test consists of movement up (positive y direction) followed 

by down (negative y direction). A third test is conducted to examine the values when the 

phone moves in a quarter circle motion. The motion is deliberate and precise over a 

distance of one foot. The compass is tested by keeping the device stationary and pointed 

in a known direction as proven by a secondary compass. To test the susceptibility to 

interference and  poor calibration, another phone is moved over top of the test phone. 

3.10 Summary 

By combining sensors in a methodical, useful manner, the ability to determine 

one’s location in a wireless network should be more reliable. This research shows that 

common devices can be configured to deduce one’s location in constrained environments 

effectively and more accurately than previous works demonstrate. This chapter outlines 

the goals and approach of this research and defines the system boundaries, assumptions, 

and parameters. An assessment of the evaluation technique is discussed along with the 

design of the experiment. 

  



 

48 

IV.  Analysis and Results 

4.1  Chapter Overview 

This chapter examines the results from the cooperative localization processes that 

are applied on the Android operating system. To differentiate between the two HTC 

phones, one contains blue wallpaper while the other has green wallpaper.  Other than the 

wallpaper, nothing differs between the phones. First, Section 4.2 details and analyzes the 

results of localizing nodes on Android as described in this effort. These results show that 

radial distances further from the access point tend to under estimate their distance while 

distances closer to the access point are over estimated.  Nodes in the middle of the 

distance range had a closer average estimate. Next, Section 4.3 explores the investigative 

questions answered from the experiment. Finally, Section 4.4 concludes the analysis and 

results chapter with a summary. 

4.2  Results of Experiment Scenarios 

While pursuing cooperative localization strictly on mobile devices, several 

observations are discovered through the development process. First, since the RSS 

database is used heavily for distance correlations, it is discussed in Section 4.2.1. Next, 

brief generalizations about the accelerometer and compass are mentioned in Sections 

4.2.2 and 4.2.3 respectively. The outcome of the resulting system is explored in Section 

4.2.4. Finally, a demonstration of how bad a few select results could be is shown in 

Section 4.2.5. 
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4.2.1 RSS Observations 

Attempts to create an accurate RSS fingerprinting database are executed several 

times in various locations. The first observation is conducted to determine the measuring 

capabilities of the system. This experiment did not follow the 2 minute averaging process 

described in Section 3.3 and instead focused on observing a debugging log that was 

added for troubleshooting purposes. The RSS value is printed to the Eclipse LogCat 

window and the rough average is recorded for each distance. Figure 9 shows the graph of 

RSS readings corresponding to distance. The graph follows a general logarithmic curve 

using a path-loss variable of 3.01. 

 

Figure 9 - Observed RSS values in hallway 

 

In order to examine the RSS measurements more closely, a new experiment is 

conducted with a log of every RSS measured. Figure 10 shows the graph of every RSS 
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value recorded over the span of 64 minutes, or roughly 1300 RSS measurements at 1 

measurement every 3 seconds. Averaging those values every 2 minutes (the time at which 

the phone was moved to the next location) yields Figure 11. Once again, a logarithmic 

trend line is fitted and a corresponding path-loss line. In order to match the trend line, a 

path-loss value of 1.9 is chosen. The result is below the free-space value of 2 found in 

prior research but higher for the value expected for line of sight in a hallway with brick 

walls. If the data after approximately 4 meters is discarded, the resulting trend line 

(shown in dotted blue) more closely relates to the first half of the data with a path-loss 

variable of 3.2. Because data cannot simply be discarded, more measurements are taken 

with the two phones. 

 

Figure 10 - RSS recordings in hallway; 2 min at each location 
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Figure 11 - 2 min averages in hallway with unpredictable results after 4m 

 

Another recording experiment with the green phone is conducted a week later in 

the same location. Unfortunately, this data is highly unrealistic and completely unusable 

due to the high standard deviations at each distance. Figure 12 shows the graph of every 

RSS value recorded throughout the experiment. Few explanations can be offered for 

these results. There is minimal human traffic in the hallway and in general fewer people 

in the building than the previous experiment. The application does not record RSS values 

if it is not attached to the specific hotspot, so readings from another Wi-Fi source are 

unlikely. Regardless, the 2 minute averages are plotted and are shown in Figure 13. The 

green line shows the logarithmic trend line with a path-loss variable of 1 which is 

unrealistic. A slightly more probable trend line is shown in dotted red with a variable of 

2.8. 
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Figure 12 - RSS recordings in hallway with another phone showing inaccurate readings 

 

Figure 13 - 2 min averages in hallway showing averaging does not reduce the inconsistencies of the 
results 
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In an effort to assess the equipment in another location, another experiment is 

conducted in a laboratory space at AFIT. Both phones are tested under the same 

procedures as before. Figure 14 shows the green phone’s RSS values while Figure 15 is 

the 2 minute average. Like the previous two figures, the RSS values are not typical for an 

indoor environment. While the trend line for Figure 15 is slightly more realistic, there is 

low correlation between the two graphs to make a generalization about signal strength to 

distance given different locations. 

 

Figure 14 - RSS recordings in a lab environment with a general logarithmic decay 
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Figure 15 – 2 min averages of the previous plot where the trend line does not suggest a realistic path 
loss exponent 

 

Testing the blue phone yields much better results. The RSS plot is shown in 

Figure 16. The correlation between distance and RSS value is much clearer than the other 

phone. The average plot, shown in Figure 17, also shows a much better trend line with a 

reasonable path-loss variable of 3.1. Viewing these plots along with Figure 10 and Figure 

11 show a similar logarithmic decay followed by an increase received power. As a 

comparison, the data from Figure 11 is plotted with the data from Figure 17 to produce 

Figure 18. The RSS values for the hallway were lower than in the laboratory considering 

the latter contains many chairs and metal cubicles causing more multipath and signal loss 

through the space.  
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Figure 16 - RSS recordings in a laboratory using a different phone 

 

 

Figure 17 - 2 min average of the previous plot with a much more realistic logarithmic decay 
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Figure 18 - Two most similar runs compared showing a similar drop in RSS values at different 
distances 

Viewing these observations, it is clear that correlating distance to RSS 

measurements is potentially inaccurate. Other instances monitoring the RSS level while 

testing the application show that while not moving, the value varies several decibels and 

both HTC phones placed side by side could report an RSS reading 10dB apart. 

In order to move forward with the experiment, another location is modeled, 

similar to the laboratory environment, with readings at the starting point of 0.254m then 

at every meter after. Since these readings are the locations that are going to be used for 

the experiment, recording at two minute intervals at only these measurements are more 

time effective. Recording the other distances in between the meter intervals only adds 

time necessary to complete the experiment and adds little clarity to the trend line needed 

to characterize the RF environment. Figure 19 shows the RSS values recorded followed 

by the next figure showing the average values along with the standard deviation for each 

-100 

-90 

-80 

-70 

-60 

-50 

-40 

-30 

-20 

0.
25

4 
0.

50
8 

0.
76

2 
1.

01
6 

1.
27

 
1.

52
4 

1.
77

8 
2.

03
2 

2.
28

6 
2.

54
 

2.
79

4 
3.

04
8 

3.
30

2 
3.

55
6 

3.
81

 
4.

06
4 

4.
31

8 
4.

57
2 

4.
82

6 
5.

08
 

5.
33

4 
5.

58
8 

5.
84

2 
6.

09
6 

6.
35

 
6.

60
4 

Po
w

er
 in

 d
Bm

 

Distance (m) 

Best Runs Compared 

CyberAnimal Run 

Hallway Run 



 

57 

location. Most variances are approximately 1dB, which is good for determining reliable 

RSS measurements for the specific location. The two worst measurements expectedly 

occur at the further distances resulting in variances of 3.7dB and 3.1dB for 6m and 7m 

respectively. 

 

Figure 19 - RSS recordings used for building the database 
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Figure 20 - Averaged RSS values with standard deviations 
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Because 802.11 transmitters tend to use different power levels dependent on the brand, 

there are no one-size-fits-all path-loss curves for WLAN signals. 

 

Figure 21 - Expected path-loss curve estimates for 3 exponents compared to actual recordings 
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negative for the other direction. This, however, is not always observed as seen in Figure 

22.  

 

Figure 22 - Acceleration X and Y values moving right to left to right 
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SensorEvent value is reported above the threshold. After these observations, the 

accelerometer has to be limited to just depicting when movement occurs and not 

necessarily how far or what direction.

 

Figure 23 - Acceleration X and Y values moving phone up and down 
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Figure 24 - Acceleration X and Y values moving phone in quarter circle 
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test phone, it is observed that the stabilized compass value is now 41 degrees from the 

original observed azimuth. In order to mitigate this risk, the use of the compass is 

programmed into the system; however, a hardcoded value is used to calculate the actual 

distance. 

 

Figure 25 - Compass values with interference added 
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The 0.254m results first highlight how a difference in database training can 

become invalid. The database is trained with lower RSS readings at 0.254m but during 

experimentation, the RSS levels at that distance are higher, thus corresponding to a 

higher estimate, such as 0.652m. Figure 27 also shows where many estimates have a 

higher RSS reading thus corresponding to the estimates at 2m instead of 1m. The values 

at 1m have the third highest error of the experiments but the estimates are either clearly 

near 1m or 2m suggesting that the RSS readings cause the database lookups to go quickly 

from approximately 1m to 2m. Figure 28 shows the estimates tend to fall into four 

different columns. Like other plots with columnar results, the RSS values consistently 

grouped into different numbers. The lack of estimations in between the columns is due to 

having limited RSS values available to catalog every potential location. Appendix B 

contains the database used to achieve these results. 

 

Figure 26 - Estimations at 0.254m show the system over-estimates the position 
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Figure 27 - Estimations at 1m were split between near 1m or 2m 

 

Figure 28 - Estimations at 2m overestimate the distance 
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Figure 29 - Estimations at 3m are fairly close to the actual distance 

 

Figure 30 - Estimations at 4m were close to the actual distance 

 

Figure 31 shows the largest average error found. This is mostly related to the 

difficulties in accounting for the RSS reading between 4-5m as shown previously in 

Figure 18. The best thing to overcome this problem would be to program conditions that 

would be illogical such as if the previous estimate was at 4m and significant movement 

0 

5 

10 

15 

20 

25 

30 

2 2.5 3 3.5 4 4.5 

Tr
ia

l #
 

Distance (m) 

30 Datapoints at 3.0m 

Estimates 

0 

5 

10 

15 

20 

25 

30 

3 3.5 4 4.5 5 

Tr
ia

l #
 

Distance (m) 

30 Datapoints at 4.0m 

Estimates 



 

67 

was detected, then the next estimate should be 5m for that RSS value. Figure 32 shows 

that results for 6m are the closest to the actual distance; however, a few early trials 

reported estimates of 4.3m. The low estimate is a result of the phone calculating higher 

signal strength than what it should have, possibly caused by not refreshing adequately for 

the new distance. If these three trials are removed or rerun, the 6m results could 

potentially go from the second highest standard deviation to the lowest making it the best 

distance estimate. In the worst case, the three reruns would produce the same estimate of 

4.3m and in the best case; an estimate much closer to 6m could be produced. The final 

distance, 7m, represents almost a give and take aspect of this whole experiment. All 

estimates are shorter than the actual distance showing that the RSS value was not as weak 

as anticipated at this distance. However, if the database is adjusted to represent -67dB as 

7m instead of 6.2m, then the average estimate and standard deviation for the 6m distance 

would likely go up drastically making it more unreliable. 

 

Figure 31 - Values at 5m are underestimated 
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Figure 32 - Estimations at 6m were closest to the actual distance 

 

 

 

Figure 33 - Estimations at 7m were all underestimates 
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In order to summarize the results, the average error rate for each distance interval 

is plotted with standard deviation error bars. This plot is shown in Figure 34. The 

horizontal axis indicates what average estimates are closer or further from the access 

point. For instance, the average estimate for 0.254m is 0.593m meaning the average 

estimate is on the “high” side. By contrast, most of the results for the 7m distance are 

around 6.1m so the average estimate is on the “low” side and closer to the access point 

rather than further from it.  

 

Figure 34 - Error plot for each distance value showing if the average estimate was an over or under 
estimate and how widespread the standard deviation was 
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distance increases, then falls sharply only to rise again. This feature makes it very 

difficult to distinguish between these distances accurately. A potential reason for the 

increase in RSS is that as the wireless hotspot receives requests from the test phone it 

increases its output power, but is unable to keep that output level. 

4.2.5 Worst Case Scenarios for Distance Estimation 

With any localizing method there will be unavoidable errors. In order to better 

understand how badly the estimate could be with this system, some of the worst estimates 

are plotted with error attributed to GPS readings. The worst values at 0.254m, 2m, 4m, 

and 6m are chosen coupled with the worst GPS error for that distance. Figure 35 shows a 

plot of each location with the original estimate from the previous section, where the GPS 

could potentially be, and where the actual location is. In instances where the worst 

estimate is closer to the anchor (estimates at 4m and 6m), the potential anchor position is 

positive 1.8m. In the other scenarios, the anchor position is negative 1.8m to make the 

overall separation more drastic. The location with the lowest potential error is at 0.254m 

with an error of 2.65m and the largest potential error is at 6m with an error of 3.5m.  
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Figure 35 - Worst Case Estimations for 0.254m, 2m, 4m, and 6m 
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4.3  Investigative Questions Answered 

In order to determine if commercial mobile phones can be used for cooperative 

localization without relying on an external infrastructure, the capabilities and 

characteristics of the phone need to be understood and modeled. By testing individual 

sensors, their virtues and shortcomings can be better implemented into the system. In a 

restricted experiment, results found that cellular phones can cooperatively localize one 

another when one node has a bad location estimate while another has a much better one. 

One of the goals of the research is to perform better than previous efforts. 

Comparing the results of this effort, which relied on a much smaller scale than the 

systems presented in Chapter 2, to the other systems is perhaps unpredictable. In order to 

accurately compare them, either the other systems would have to be reduced to one 

access point, or multiple access points would have to be added to this work. However, 

looking at the preliminary results, this system fared well with errors less than a meter. 

The other efforts which used multiple sensors are CERP, DMRF, and SELFLOC (Gwon, 

Jain, & Kawahara, 2004) (Fang & Lin, 2010). All of them have accuracy ranging 

between 1-2m and error rates less than 2m. This effort found accuracy less than a meter 

and error rates below 0.65m. The system listed in Chapter 2 to do better was Ubisense 

which is a commercial product using special tags that operate using UWB signal. The 

stark difference in accuracy is directly related to the higher precision available to UWB 

signal and special hardware to compute both AOA and TDOA versus WLAN which, in 

this effort, only relies on RSS.  



 

73 

4.4  Summary 

This chapter presents the data collected from the various sensors sought to aid in 

cooperative localization. By analyzing the merits of each sensor available, the confidence 

of a resulting location can be achieved. The results of characterizing the RSS 

environment have shown that variations in measurements are too drastic to accurately 

correlate a distance to the measurement. When considering acceleration data, only 

magnitude has been shown to be valuable for localization. While the compass showed a 

few degrees of error, the primary concern was keeping the sensor calibrated. 
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V.  Conclusions and Recommendations 

5.1 Chapter Overview 

This chapter concludes the research presented in this thesis. Section 5.2 discusses 

the overall conclusions of the research and what has been achieved from the original 

goals. Section 5.3 discusses the importance of this effort while Section 5.4 explores some 

suggestions for future research. Finally, Section 5.5 summarizes the chapter. 

5.2  Conclusions of This Research 

This research seeks to bring cooperative localization to computationally 

constrained devices placing the entire system onto the mobile node in real time as 

opposed to relying on post processing and extra hardware. Location estimates are 

produced within three seconds of moving to a new location instead of having to wait until 

after the experiment is complete and the data is processed. Several key observations are 

achieved: 

• Sources of RSS variances include time of day and specific device being 

used 

• RSS values tend to float a couple values even when neither device moves 

• The compass can easily lose calibration 

• The accelerometer shows multiple directions of movement even while 

controlled to one direction 

As theorized, the accelerometer has to function as a method to detect when 

movement occurs, not necessarily what direction or how far. This short coming is logical 

since the accelerometers chosen for smart phones, particularly lower end models, are 
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never intended for high precision activities. The capabilities of the compass and RSS are 

more lacking than originally expected. Calibration routines would need to be worked into 

the testing methodology before every experiment run to ensure the hardware is 

performing as expected. RSS limitations could be overcome with multiple sources 

contributing readings to reduce error and fluctuations. Also, the lack of directly being 

able to read the signal strength level on the Bluetooth signal prevents it from being 

readily used for cooperative localization. The system could be adapted by modifying the 

kernel to make this information available. Another approach could be if a phone has the 

ability to connect to another via Bluetooth, then the distance must be within a certain 

range. 

5.3  Significance of Research 

The capabilities of GPS and cellular tower triangulation are widely known when it 

comes to location determination. The research done in the realm of cooperative 

localization is also well known with robotics and specialized hardware. This research 

examines the potential of localizing nodes without special hardware and entirely amongst 

themselves. By exploring the various sensors available on common smart phones, the 

merits of using them could be weighed appropriately. For instance, the variation in 

wireless signal can be averaged if the phone has not been moved according to the 

accelerometer. The compass can be used to compute the latitude and longitude of another 

node it is pointing towards. When incorporating the JDL Data Fusion model, sensors can 

be used as they are available or as they can contribute to the improvement of the 

estimation. 
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Every effort to minimize location error can aid in combat operations, search and 

rescue missions, and even advertising. This location minimization becomes more possible 

since more and more people are adopting smart phones as their primary communication 

device. The multitasking nature of Android allows for the localizing services to run 

seamlessly in the background while the user is able to operate their phone as they require. 

The Android operating system allows them to be a passive node in the network helping 

other nodes to localize, or switch to being an active node seeking directions or distance 

information to other nodes. 

5.4  Recommendations for Future Research 

The variance of RSS in different locations and between nodes prevent the use of 

this signal from reaching its desired functionality. Future work could do more to 

characterize the ability of a phone to work as a Wi-Fi hotspot. There are undoubtedly 

differences between a standard wireless access point and a smart phone and 

understanding how they differ could result in a more robust database. Putting more 

modularity into the database would also be a worthwhile endeavor. As conditions change 

from one location to another, the path-loss equation should also change. This could 

reduce the error in distance measurements.  

This research deals with a very sparse network of nodes which makes localization 

much more difficult. By adding more nodes, error can be reduced. Future research should 

include modifying the current framework to account for more nodes. Several assumptions 

are made to localize only two nodes. One of the considerations that would need to be 

addressed is how to add and access values in the database. The database requires unique 
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keys for entries which means the IP address can not necessarily be used if you want to 

keep a catalog of the various locations a node has been. The RSS value also cannot be 

used because there could be numerous nodes at numerous locations with the same value. 

The database is conceived as a means to quickly localize nodes and can be kept for that 

reason, but it would just need a few adjustments such as creating a new unique key based 

off the RSS value and IP address of the neighbor node. 

Ad hoc networks can expand a typical wireless footprint as large as there are 

nodes. A couple protocols (AODV and OLSR) have been attempted on Android and in 

the latest operating system release, 4.0, native support for peer-to-peer connections are 

implemented. By implementing an ad hoc network, nodes can route messages among 

themselves and not require a specific, stationary Wi-Fi access point. As noticed from 

testing the capability of a phone to operate as a hotspot, the transmission distance is not 

nearly as far as other infrastructure-based access points. The multi-hop packet routing 

would allow for a node potentially around the corner to become aware of the other nodes 

in the network. This network extension would be more beneficial for some of the 

scenarios described in Chapter 1 where the existing infrastructure may not be available 

and yet nodes need to be localized for critical safety reasons.  

5.5  Summary 

This chapter expounds the concluding remarks for this research effort. Overall, 

the ambitious tasks were difficult to achieve due to unexpected hardware limitations. 

More time had to be devoted to learning and understanding the programming 

environment and what the hardware was capable of instead of refining a localization 
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algorithm. Carrying out physical experiments were also time consuming as pieces of 

software were tested, new issues regarding the environment were uncovered. Overall 

several key lessons were learned and a beginning towards establishing a cooperative 

localization system on a mobile platform is underway. 
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Appendix A 
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Appendix B 

CREATE TABLE rss (rss integer primary key, dist float, accuracy float);
INSERT INTO "rss" VALUES(-73,7.010,1.150);
INSERT INTO "rss" VALUES(-72,7.010,0.416);
INSERT INTO "rss" VALUES(-71,7.010,0.416);
INSERT INTO "rss" VALUES(-70,7.000,0.635);
INSERT INTO "rss" VALUES(-69,6.700,0.416);
INSERT INTO "rss" VALUES(-68,6.600,0.254);
INSERT INTO "rss" VALUES(-67,6.500,2.997);
INSERT INTO "rss" VALUES(-66,6.400,2.997);
INSERT INTO "rss" VALUES(-65,6.300,2.997);
INSERT INTO "rss" VALUES(-64,6.200,1.322);
INSERT INTO "rss" VALUES(-63,6.100,0.873);
INSERT INTO "rss" VALUES(-62,6.000,0.513);
INSERT INTO "rss" VALUES(-61,5.450,0.873);
INSERT INTO "rss" VALUES(-60,5.000,2.997);
INSERT INTO "rss" VALUES(-59,4.600,0.950);
INSERT INTO "rss" VALUES(-58,4.320,1.208);
INSERT INTO "rss" VALUES(-57,4.013,0.710);
INSERT INTO "rss" VALUES(-56,3.140,0.646);
INSERT INTO "rss" VALUES(-55,2.990,0.611);
INSERT INTO "rss" VALUES(-54,2.790,0.495);
INSERT INTO "rss" VALUES(-53,2.550,0.647);
INSERT INTO "rss" VALUES(-52,2.292,3.775);
INSERT INTO "rss" VALUES(-51,2.000,3.898);
INSERT INTO "rss" VALUES(-50,1.980,3.428);   
INSERT INTO "rss" VALUES(-49,1.106,0.124); 
INSERT INTO "rss" VALUES(-48,1.000,0.212);
INSERT INTO "rss" VALUES(-47,0.892,0.292);
INSERT INTO "rss" VALUES(-46,0.652,0.364);
INSERT INTO "rss" VALUES(-45,0.587,0.429);
INSERT INTO "rss" VALUES(-44,0.531,0.277);
INSERT INTO "rss" VALUES(-43,0.476,0.222);
INSERT INTO "rss" VALUES(-42,0.429,0.175);
INSERT INTO "rss" VALUES(-41,0.386,0.132);
INSERT INTO "rss" VALUES(-40,0.348,0.094);
INSERT INTO "rss" VALUES(-39,0.313,0.059);
INSERT INTO "rss" VALUES(-38,0.282,0.028);
INSERT INTO "rss" VALUES(-37,0.254,0.025);  
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